State Vector Based Quantum Circuit Simulator

Michael Tauraso
University of Washington
(Dated: December 13, 2022)

A state based quantum computer simulator written in the Rust programming language for win-
dows computers, which takes quantum circuit input written in OpenQASM 2.0. The Quantum
Simulator supports all behavior defined in the OpenQASM 2.0 specification, including the full scope

of expressable quantum/classical interaction.

I. INTRODUCTION

This project arose out of a desire to have a desk-
top calculator of sorts for analyzing the correctness of
circuits on homework assignments, as well as a plat-
form for exploring the various ways that error can enter
quantum circuits. After exploring several online quan-
tum circuit simulators, and seeing their limitations I
became interested in how difficult it was to construct
one, and what sorts of trade-offs I might encounter in
the attempt. The quantum simulator itself is available
at https://mtauraso.github.io/QuantumSimulator/,
and is a windows command line application that imple-
ments the OpenQASM 2.0 language.

This paper starts with an overview the technology the
simulator is built with in sections II and III. Then the
mathematical formalism that is used internally will be
introduced in section IV, followed by examples of how
quantum gates are implemented in section V. Measure-
ment and classical control of quantum information are
covered in sections VI and VII respectively. In sections
describing the implementation of the simulation algo-
rithm, there are specific references to relevent sections
of the program code. Section VIII concludes with some
thoughts on extending the program, none of which have
been implemented.

I1I. TECHNOLOGY CHOICE

Quantum simulations are usually limited by the
amount of memory available to store amplitude informa-
tion. In order to be able to have some direct contact with
this issue, I decided to use Rust as the implementation
language.

Rust is similar to other systems programming lan-
guages like C/C++, and Fortran in that it allows the
programmer to have some very direct access to the us-
age of memory, and supports a strong type system. The
downside of using most systems languages is that in get-
ting greater control over what the computer is doing, you
give up the ability to program higher level concepts with-
out writing a lot of code.

Systems languages also make it easy to introduce bugs
that are difficult to track down, or only occur in a small
number of runtime scenarios. Rust has several features
that address these issues, borrowed from functional pro-

gramming languages like SML/NJ, and OCAML. Ulti-
mately these language features made it easier to know
the program was working correctly, but didn’t necessar-
ily speed up development.

One language feature that was particularly useful was
the integrated testing in rust. src/main.rs has several
sample programs which are run in batch mode with the
cargo test command. These tests allowed quick check-
ing that no existing functionality had broken as the pro-
gram grew in size and complexity.

Since the focus of this project is simulating quantum
computation, I decided to use libraries to perform steps
like parsing and translation of the OpenQASM language,
linear algebra/tensor operations, command line interface,
and error handling. With the exception of the parsing
and translation library for OpenQASM, all of these li-
braries are general purpose utilities without any partic-
ular focus on quantum computing.

A excellent and readable summary of the OpenQASM
language can be found in the language spec[1]. The 2.0
version of OpenQASM has minimal features of tradi-
tional programming languages; however, it offers a ma-
chine readable way to implement any quantum circuit.

OpenQASM requires the underlying quantum hard-
ware to be able to perform two gates: a controlled not,
and a unitary rotation gate defined in the paper. Open-
QASM allows more complex gates or circuits to be de-
fined in terms of those basic gates in a recursive man-
ner. It also supports expressing non-deferred measure-
ment and classical control of quantum operations.

Since 2017 OpenQASM has been extended to a 3.0
version that includes support for many more classical
programming control flow constructs. The grammar of
OpenQASM 3.0 is still in flux, and represents a much
larger implementation target; however, the base quan-
tum gates are the same as OpenQASM 2.0[2]. Given
that the focus is on quantum circuits, only OpenQASM
2.0 is implemented in the simulator.

III. PARSING AND TRANSLATION

When the simulator opens a circuit file, the raw
OpenQASM code is first parsed and translated by the
OpenQASM parser library. This library provides hooks
for several types of program syntax errors, and han-
dles things like the inclusion of the quantum experience

header which defines many useful gates in OpenQASM
in terms of the basic U and CX gates that are built into
the language.

Once the circuit file has been parsed, the library of-
fers two ways to programmatically access the parsed file.
There is a low-level interface which allows access to the
syntactic structure of the file, and a high level linearizer
interface. The linearizer allows a program using the li-
brary to traverse the OpenQASM program recursively,
accessing first the declarations of all quantum registers,
and then the basic U and CX gates in order along with
the other basic statements.

All of the simulation evolution and setup logic is
invoked by the recursive enumeration done by the
parser. The QuantumRegisterGateWriter object de-
fined in src/register.rs recieves calls from this recur-
sive enumeration. Recursive enumeration is initiated in
opengasm_run_program function in src/main.rs. Errors
from the parsing library, and calls to parse and check
the program are handled in the opengasm_parse_* and
opengasm_check_program functions.

IV. QUANTUM BITS

The approach taken for this simulator was relatively
simple in the sense that it is unsophisticated, and one of
the more naive possible approaches. The program keeps
record of every possible complex amplitude, so the mem-
ory usage is O(2") where n is the total number of bits
across all distinct registers defined in the quantum cir-
cuit. Classical bits are included in this count, which al-
lows a straightforward implementation of classically con-
trolled quantum gates.

The usual manner of working out a quantum circuit by
hand uses Dirac notation to define state vectors and ma-
trix transitions in the Hilbert space of the quantum com-
puter. This simulator represents the same amplitudes
as tensor components more in the manner that general
relativity is usually exposited.

The amplitudes that describe the quantum computer’s
state are a rank-n tensor with complex-valued compo-
nents. Each index of the tensor can be 0 or 1 and corre-
sponds to a single quantum bit[3]. Each quantum oper-
ation is a tensor contraction, which sums across the am-
plitudes associated with each quantum bit involved. In
this paper I will be following the convention that ket vec-
tors correspond to a lower tensor index, and bra vectors
correspond to an upper index. I will also be using greek
letters «, B, .. for quantum bits, and latin letters u, v, ...
for classical bits. If a tensor is written with upper indi-
cies, it is implied that the components of the upper index
version are the complex conjugate of the corresponding
components in the lower indexed version.

V. QUANTUM GATES

The Hadamard gate is usually represented as the ma-

trix %(% ,11), which is equivalently written in dirac
notation as 5 (|0)(0] + [0)(1] + [1){0] — [1)(1]) In the
tensor notation, the hadamard would be H“g where
Ho’ = Hy' = H\’ = gz and H;' = —J5. Likewise

a two qubit quantum computer with the first bit initial-
ized to one, would have the amplitude matrix A,g where
Aqp = 1 and all other components are zero, correspond-
ing to the state ¥ = |10) in Dirac notation.

In order to compute a hadamard of the first qubit,
the simulator contracts the lower index of the qubit (ket
vectors) with the upper index of the Hadamard tensor
(bra vectors). Using the einstein summation convention,
the new amplitudes are

Aoy =Hy Ag.

This new set of amplitudes has two lower indicies, o and
B which correspond to the new amplitudes for the two
qubits after the Hadamard. The only non-zero compo-

nents of A’ are A'qp = % and A'1p = —%, which cor-

respond to the dirac state ¥’ = %(\00) —|10)), which is
exactly what we would expect.

This formalism works similarly for multiple qubit
gates. A CNOT gate can be represented by the tensor
C.5%" where Coo™ = Cp," = €1, = O™ =1 and all
other components are zero. In this exposition it tempt-
ing to read the upper indicies as the “input” bit patterns,
and the lower indicies as the “output” bit pattern; how-
ever, this only works because CNOT does not mix our
basis states. The order of contraction of the CNOT ten-
sor with our amplitudes controls which bit is the control
bit and which is the target bit.

We can take the prime state above and evolve it further
by applying a CNOT targetting the second qubit with the
first qubit as control. The resulting amplitudes can be
written

A//aB _ CaB’YéA/'yé-

The only non-zero components are A”gy = % and
A"y1 = —-L% which corresponds to the bell state we

\/ia
would expect: ¥ = %(\OO) —1]11)). Note that reversing
the order of the v and ¢§ indicies one one tensor in the
sum above results in no change to the amplitudes, which
is what we would expect if the control and target bits of
the CNOT gate were reversed.

This method is easy to extend mechanically to many
more qubits, as is needed to accomodate large circuits. In
the quantum simulator ndarray and einsum packages are
used to perform these tensor contractions, and the exam-
ples above follow how the two builtin gates CX and U are
implemented in the simulation. The functions apply_u,
and apply_cx in src/register.rs implement the math-
ematics of these gates [4].

This formalism can also be extended to perform both
measurement and the classical control of quantum gates,
without falling back to a sampling approach for mea-
surement. It is also possible to at any point gener-
ate the density matrix for the system by computing
Pap”® = AysA7°. In this way the program is essentially
manipulating half of a density matrix on each operation.
Note that following the convention for mapping upper
and lower indicies to dirac notation, A% = (A,5)*

VI. MEASUREMENT

When qubits are measured, there are many potential
things that can mean in a simulation context. The de-
sired outcome may be probabilities for various bit pat-
terns, post-measurement selection of certain bit patterns.
The circuit may go on to use of a measured bit to con-
trol a quantum operation. As we have seen on the
homework, classical control of quantum gates, can repli-
cate a quantum gate given certain input states. Open-
QASM even supports doing multiple measurements into
the same classical bit, where the earlier measurements are
no longer present in the circuit at the end of execution
time.

For the sake of modularity, it is desirable to separate
the evolution of the quantum circuit and measurement
from the format that the measurement is surfaced in the
interface. It is also desirable to have an evolution al-
gorithm that can handle even the more complex circuit
cases.

In order to achieve these objectives, measurement and
classical bits are implemented in the same tensor formal-
ism used for quantum operations. Each tensor of ampli-
tudes is extended with additional indicies corresponding
to the value of classical bit registers defined in the Open-
QASM input file.

The OpenQASM measure statement can occur at any
point in the program, and it measures a quantum bit
on to a classical bit. The simulator begins to evalute
the measure statement by projecting the full amplitude
state onto each of the basis states for the qubit we are
measuring. Then the simulation uses these projections
to assemble a tensor that represents the amplitudes after
a measurement.

Returning to the example from Section IV and drop-
ping the primes, consider the state ¥ = %(|OO) —[11)),
represented by the tensor A,,s. The u index is a classi-
cal bit set equal to zero, such that all tensor components
are zero except Aggy = % and Ag;; = ——=. In or-
der to measure the first qubit, the simulation starts by
projecting across the zero and one basis states.

P(O)ﬁa and P(l)ga will be the respective projection
tensors, such that the only nonzero components are
P(O)OO = P(l)ll = 1. Since the classical bit is zero at the
beginning of the operation we only need consider ampli-
tude components where u = 0:

A(O)aﬁ — p(O)a"’Aow 7 A(l)aﬁ — P(l)a’YAO'yﬂ

The classical bit may however have been the result of
some quantum measurement. Had the classical bit u not
been equal to zero, the simulation would simply swap
the classical bit index u with a newly created classical
bit index. This newly created classical bit index is de-
fined to only have nonzero amplitudes on the zero valued
components. When calculating measurement probabil-
ities, this “hidden bit” gives us another index to trace
over; however, it preserves quantum state that may be
entangled with earlier measurements. In the simulator,
the hide bit function in src/register.rs handles the
swapping in of new zeroed bits as needed. Notably, Open-
QASM'’s reset command is entirely handled by calling
hide_bit.

After contending with any newly introduced bit indi-
cies, the evolved amplitude tensor is constructed by as-
signing the projected amplitudes to the relevant slices
such that A'oap = Agyap and A'1ap = Aq1)ap. After the
measurement, the overall amplitude tensor has the same
meaning it had before: A’op are the amplitudes of the
qubits @ and S in the case where the classical bit u was
measured to be |0), and likewise for A'1,4.

These states retain their normalization across all pos-
sible cbit values, as if they were also qubits. The simu-
lator uses these post measurement amplitudes to answer
probability questions. After the measurement A’gyp is
the projection where the a qubit is in state |0). The
probability of this outcome is simply the squared norm
A OaﬁA’Oaﬂ = % Since the indicies match upper and
lower, this tensor contraction will always be real.

Because probabilities computed this way are normal-
ized to cover all possible outcomes from running the
circuit, conditional probabilities can be assembled from
them by dividing the probability representing the out-
come of interest by the probability for the condition.

The code that performs the amplitude updates associ-
ated with measurement is in the apply measure function
in src/register.rs, and the computation of squared
norms is performed in the probability and norm_sqr
functions of that same file.

VII. CLASSICAL CONTROL

OpenQASM supports a limited control flow function-
ality where a classical bit register can control a quantum
operation via the if command. Within the tensor for-
malism this is achieved by taking the relevant classical
indicies and holding them to be equal to the target value
of the if statement, and then performing other quantum
gates as before.

For example, consider the simulator evaluating the
statement if (u == 0) h q[0]; . This statement
asks for the quantum bit q[0] to be acted on with a

hadamard gate h only if the classical register u has the
value zero. Returning to the tensor from before, the sim-
ulator takes the A,qg tensor and saves it. Then the sim-
ulator makes Ag,p active for gate evolution, pinning the
value of the u index to zero. After the gates specified
in the condition statement complete, the simulation up-
dates only the u = 0 components of the original A,qgs
tensor, and uses that same tensor for future gate evolu-
tion.

VIII. POSSIBLE EXTENSIONS

Performance of this program would be vastly improved
on large programs by two changes: Allocation of all mem-
ory at the start, and the use of a sparse representation.
Allocating the required number of tensor indicies at the
start of the program would require a pre-pass, because
measure and reset operations can each introduce a new
index to the amplitude tensor under certain conditions.
Currently the allocation of new memory for indicies and
copying of prior tensor components is done on an as-
needed basis. Pre-allocating the correct amount of space
would be significantly faster. Using a sparse matrix li-
brary to hold the amplitude tensor would also speed
things up. Currently a large amount of compute time

and allocated memory are keeping track of the number
zero in various tensor components.

The simulator currently operates on complex ampli-
tudes as pairs of 32-bit floating point numbers. This
has sufficient precision for the algorithms included in the
/sample/ directory; however, much of the by-hand anal-
ysis of circuits is done algebraically. It would be interest-
ing to replace this 32-bit floating point type with an ex-
pression type which could accomodate symbolic notation.
Because of the design choice to avoid implicitly sampling
during measurement, it is possible to carry through this
symbolic representation to the end of the calculation.
This would yield symbolic expressions for the probability
values, similar to what one might calculate by hand.

Unfortunately there was not time on this project to
implement the introduction of errors; however, this rep-
resentation is fairly close to a density matrix formalism.
The expositions of idealized quantum error in [5, 6] use
the density matrix formalism and take an implicit trace
over the part of the environment that is responsible for
the noise. Keeping with the current formulation used
by the simulator may result in too many indicies being
added to the amplitude tensor due to various error oper-
ations as hidden bits. This perfusion of extra bits may
make the program too slow or take up too much memory
to be useful.

[1] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M.
Gambetta, Open Quantum Assembly Language (2017),
arXiv:1707.03429 [quant-ph].

[2] A. W. Cross, L. S. Bishop, J. A. Smolin, and
J. M. Gambetta, OpenQASM 3.x Live Specification,
https://opengasm.com/index.html.

3] J. Kattemolle, Quantum Circuits in
Python using nothing but Numpy,
https://www.kattemolle.com/other/QCinPY .html.

[4] There is a slight difference in the definition of the U gate
between OpenQASM 2.0 and OpenQASM 3.0. Despite

the rest of the program implementing OpenQASM 2.0,
I chose to use OpenQASM 3.0’s definition of the U gate,
because it allowed the Hadamard gate in the simulator to
be % (10)(0[+10)(1|4|1)(0| —|1)(1]), which made it easier
to check the simulator against outside references.

[6] M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cam-
bridge University Press, 2010).

[6] M. Le Bellac, A Short Introduction to Quantum Informa-
tion and Quantum Computation (Cambridge University
Press, Cambridge, 2006).

